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I. Introduction.-Courant, Friedricks and Lewyl have outlined a
procedure for solving boundary value problems of partial differential
equations by considering the corresponding partial difference equations
and allowing the mesh width to approach zero at some convenient stage
of the game. The purpose of this paper is to take over some of their
definitions and concepts and construct a lattice theory with no thought
of any process in which the mesh width continually approaches zero.

II. 1. A Calculus of Variations Problem.-A necessary condition
that the function u(xi) must satisfy when2

n
J = F(xi, u(xj),u.(xj)) Axi (1)

i =1

is stationary is,

6F(xi, u(xi), u.(xi)) _[F(xi, u(xi), ux(xi)) ] = 0. (2)
au bu X

This result is obtained very simply by a process everywhere similar to the
process for obtaining Euler's equations from the condition

Lb
5JF(x, y(x), y'(x))dx = 0, (3)

excepting that instead of an ordinary integration by parts, an Abel's
rearrangement is made of the terms in the finite sum.

If we use the obvious extension of (2) to more independent variables,
then the expressions for L(u) and M(v) given by C. F. L.3 come immediately
from the hypothesis

6FE(GL)B(U, V)AxiAy = 0. (4)

2. Mechanics.-The similarity between the forms of (2) and of the
Euler-Lagrange equations of mechanics suggests an investigation of a
dynamics based on (2). There is also the problem of wandering motion
on a lattice in which (2) is involved directly and so one may hope for a
probability interpretation of mechanics via these processes-a desirable
result from the point of view of the quantum physicist.
For the case of the analogs of Laplace's equation and the wave equa-

tions the theory has been developed by C. F. L. The solution for the
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wave equation for finite differences has been given by Boole4 and more
generally by G. C. Evans. This solution is identical with the solution
of the differential wave equation-a striking result. Any wave differential
equation may be replaced by the corresponding difference equation. The
difference between the two cases will appear only when one can observe
the difference between very small finite differences and differentials, i.e.,
no observation can choose one formulation and reject the other.

2.1 Wandering Motion in a Linear Lattice.-Consider a linear lattice
of points whose coordinates can be specified by... X-2, x-1, XO, xI, x2, . . .
Let the lattice distance be 1. At each point let there be a clock and let
all of the clocks be synchronous.
Suppose there are particles at some
of the lattice points. At the end of
every unit of time each particle moves
to a neighboring lattice point. A
given particle is just as likely to pass
to one neighbor as to another. Two
particles can never occupy the same
lattice point at the same time. Al-
ternate lattice points are marked "+"
and "-." The "+" lattice has par-
ticles that are completely independent FIGURE 1An-way lattice.
of the particles in the "_ lattice.
Hence, we may suppose that initially only the "+" lattice has particles.
Let u(xi, ti) be the probability that a particle will be at xi at time t4. Then

u(x,, t.) = u(xi.,tP1) +u(xi+1,ty_1)

Using the difference quotient notation, (5) may be written in the form

u~;(xstj) -uii(xiti) - u;(xi,tj) - ut(xi,tj) = 0 (6)

supposing Ax = At = 1. It may be observed that (6) is the analog of the
telegraphist's equation. A solution of (5) or (6) is obviously u = 1 for
"+" points and u = 0 for "-" points.

2.2 Wandering Motion in n Directions.-C. F. L.6 consider the problem
of wandering motion on a square lattice. In such a case a wandering
particle can move in four possible directions. The methods still apply
when the lattice is more general and the number of directions is any number.

Consider a point P and about P draw a circle of radius h. Divide the
circumference into n equal parts and draw radii from P to the centers of
those parts. At the end of each such radius repeat the process so that n
sets of n parallel radii are formed. Repeat this process without end, thus
forming an n-way lattice (see Fig. 1). If n is odd there is igo negative
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of any direction. If n is even we may still suppose that every possible
direction is positive. Then every lattice point is determined by n co-
ordinates (a,, a2, ..., ax) = [a]. The probability that a wandering
particle will be at [a] at the time t + 1 is El + 1 [a]. Then Et-+ 1[a] is the
average value of the probability that the wandering particle will be at
the neighbors of [a] at the time t; i.e.,

1 n
Et+ i[a] = - E Ej[aj] (8)

ni-i

where [a,] (a,, a2, ..., a, + h, ..., ax). Subtract Ej[a] from both
sides of (8).

1in
El+I[a]-El [a] =- (Et[al - E[a]). (9)ni-

FIGURE 2

Interior sets (i1 and iQ) and boundary (B).

If n is even, (9) reduces to
X/2

n(E + 1[a] - E[a]) = E (El [a])7r7 (10)

The expectation that a wandering particle will come to [a] is

v[a] = El[a]. (11)
a = O

So if we sum (10) from t = 0 to X we obtain

n/2
-nEO [a] = E (v[a]Djj (12)j=1j

Eo[a] = 0 if there was no particle at [a] initially, otherwise Eo[a] = 1.
The solution is then the Green's function for (12) .7
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2.3 The Limiting Case for n - Co.-Equation (12) may be written
in the form

1in
v[a] = - E v[ai] + EO[a]. (13)

its = I

When n 0- 00a (13) - (14).

v[a] = 2fv[a']dE + Eo[a]. (14)

It is interesting to notice that (14) has a form similar to an equation satis-
fied by the principal solution of Poisson's equation for an arbitrary dis-
tribution of finite positive mass given by G. C. Evans:8

U(P) = 2 U(M)dO + lim (1/27r) f (l/p)4(Cp)dp. (15)

However, U(P) and v [a] have quite different meanings, the mean value
in the one case being taken around any circle of small enough radius to
remain within the region, whereas
the mean value in the other case is +
taken about a circle of radius h only.

In the case of equation (13) it is
interesting to note the full significance
of a boundary value problem. Ex-
tending the definition of the set of e +
boundary points given by C. F. L.9
we find the boundary is a strip whose _ + + ++
least width is h (see Fig. 2). >

2.4 The General Lattice in 3- 1
Space.-If we try to extend the above
work to 3-space we find that we must
restrict ourselves to the directions
that are perpendicular to the centers
of the faces of the regular solids. V
If we try to use more directions we
find we cannot weight the directions
equally. Very likely such a study
will furnish methods for dealing with
crystal problems.

3. Application to a Diffraction FIGURE 3
Problem.-Imagine a cubical crystal
lattice with lattice distance d. Mark neighboring points with opposite
signs (+ or -). Suppose that initially all of the particles have "+"
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positions. Let these particles wander in the manner of §2.1. The x-ray
is also imagined as a wandering particle, but it is wandering down a linear
lattice with lattice distance X/2. The wandering particle on the x-ray
lattice wanders into the lattice of the crystal. Then we assume conserva-
tion of momentum for the wandering x-ray particle plus the wandering
crystal particles in a direction perpendicular to the linear x-ray lattice.
Each wandering crystal particle has a momentum which is

A action Ii
A distance 2d

If it happens the number of crystal particles moving in one sense is n more
than the number moving in the opposite sense then the total momentum
in the given direction is nh/2d. The momentum of the x-ray particle is
h/X in the direction of its motion and (h/X) sin 0 in the sense opposite
to the sense of the motion of the excess of crystal particles. Conservation
of momentum then implies

nh/2d = (h/X) sin 0 or nX = 2d sin 0. (16)

The above treatment is somewhat similar to that given by Duane and
Compton.10 The "wandering" concept is, however,- new, if I am not
mistaken. It seems desirable to have as many mechanisms as possible
in mind for such a critical phenomenon.
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